The RIM-116 Rolling Airframe Missile (RAM) is a lightweight, quick-reaction, fire-and-forget missile designed to destroy anti-ship cruise missiles and asymmetric air and surface threats. The RIM-116 RAM was developed as a cooperative program between the U.S. and German governments and continues to be cooperatively produced and supported. Currently there are three RIM-116 configurations: Block 0 (RIM-116), Block 1A (RIM-116B) and Block 2 (RIM-116C). Block 0 and Block 1A have completed production. The RAM Block 2 configuration is currently in full rate production.
Development:
The RIM-116 was developed by General Dynamics Pomona and Valley Systems divisions under a July 1976 agreement with Denmark and West Germany (the General Dynamics missile business was later acquired by Hughes Aircraft and is today part of Raytheon). Denmark dropped out of the program, but the USN joined in as the major partner. The Mk 49 launcher was evaluated on board the destroyer USS David R. Ray in the late 1980s. The first 30 missiles were built in FY85 and they became operational on 14 November 1992, on board USS Peleliu.
Service:
The RIM-116 is in service on several American and 30 German warships. All new German Navy warships will be equipped with the RAM, such as the new Braunschweig-class corvettes, which will mount two RAM launchers per ship. The Greek Navy has equipped the new Super Vita-class fast attack craft with the RAM. South Korea has signed license-production contracts for their navy’s KDX-II, KDX-III, and Dokdo-class amphibious assault ship.

US Navy:
The U.S. Navy plans to purchase a total of about 1,600 RAMs and 115 launchers to equip 74 ships. The missile is currently active aboard Gerald R. Ford-class aircraft carriers, Nimitz-class aircraft carriers, Wasp-class amphibious assault ships, Tarawa-class amphibious assault ships, San Antonio-class amphibious transport dock ships, Whidbey Island-class dock landing ship, Harpers Ferry-class dock landing ships, and littoral combat ships (LCS).
Variants:
Block 0:
The original version of the missile, called Block 0, was based on the AIM-9 Sidewinder air-to-air missile, whose rocket motor, fuze, and warhead were used. Block 0 missiles were designed to initially home in on radiation emitted from a target (such as the active radar of an incoming anti-ship missile), switching to an infrared seeker derived from that of the FIM-92 Stinger missile for terminal guidance. In test firings, the Block 0 missiles achieved hit rates of over 95%.

Block 1:
The Block 1 (RIM-116B) is an improved version of the RAM missile that adds an overall infrared-only guidance system that enables it to intercept missiles that are not emitting any radar signals. The Block 0’s radar homing capabilities have been retained.
Block 2:
The RAM Block 2 is an upgraded version of the RAM missile aimed at more effectively countering more maneuverable anti-ship missiles. On 8 May 2007, the US Navy awarded Raytheon Missile Systems a $105 million development contract, development was expected to be completed by December 2010. LRIP began in 2012. 51 missiles were initially ordered. On 22 October 2012, the RAM Block 2 completed its third guided test vehicle flight, firing two missiles in a salvo and directly hitting the target, to verify the system’s command and control capabilities, kinematic performance, guidance system, and airframe capabilities. Raytheon was scheduled to deliver 25 Block 2 missiles during the program’s integrated testing phase. The Block 2 RAM was delivered to the U.S. Navy in August 2014, with 502 missiles to be acquired from 2015 to 2019. Initial Operational Capability (IOC) for the Block 2 RAM was achieved on 15 May 2015.

HAS mode:
In 1998, a memorandum of understanding was signed by the defense departments of Germany and the United States to improve the system, so that it could also engage so-called “HAS”, Helicopter, Aircraft, and Surface targets. As developed, the HAS upgrade just required software modifications that can be applied to all Block 1 RAM missiles.



